The post Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30% appeared on BitcoinEthereumNews.com. Iris Coleman Dec 10, 2025 01:06 Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges. In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio. Challenges in Multimodal AI Training Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors. Ray’s Innovative Approach Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model. Benchmarking and Performance In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens. Future Prospects… The post Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30% appeared on BitcoinEthereumNews.com. Iris Coleman Dec 10, 2025 01:06 Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges. In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio. Challenges in Multimodal AI Training Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors. Ray’s Innovative Approach Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model. Benchmarking and Performance In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens. Future Prospects…

Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30%

2025/12/11 02:08


Iris Coleman
Dec 10, 2025 01:06

Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges.

In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio.

Challenges in Multimodal AI Training

Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors.

Ray’s Innovative Approach

Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model.

Benchmarking and Performance

In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens.

Future Prospects

The success of Ray’s disaggregated hybrid parallelism in enhancing AI training efficiency paves the way for its application across larger GPU clusters and diverse hardware setups. Its ability to adapt to various multimodal architectures highlights its potential for broader implementation in AI development.

For those interested in exploring this innovative approach, Ray’s implementation is available for experimentation and feedback on their GitHub repository.

Image source: Shutterstock

Source: https://blockchain.news/news/rays-disaggregated-hybrid-parallelism-boosts-multimodal-ai-training

Piyasa Fırsatı
Raydium Logosu
Raydium Fiyatı(RAY)
$0.9529
$0.9529$0.9529
-2.29%
USD
Raydium (RAY) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Jollibee sets Jan. 24 redemption for $300-M securities

Jollibee sets Jan. 24 redemption for $300-M securities

JOLLIBEE FOODS Corp. (JFC) will redeem its $300-million guaranteed senior perpetual capital securities on Jan. 24, 2026, through its wholly owned subsidiary Jollibee
Paylaş
Bworldonline2025/12/16 00:04
XRP Forms 2022-Like RSI Signal, Next Stop: All-Time Highs?

XRP Forms 2022-Like RSI Signal, Next Stop: All-Time Highs?

XRP shows a bullish RSI divergence on the daily chart, similar to 2022, suggesting a possible trend reversal.Read more...
Paylaş
Coinstats2025/12/16 01:13
How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings

How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings

The post How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings appeared on BitcoinEthereumNews.com. contributor Posted: September 17, 2025 As digital assets continue to reshape global finance, cloud mining has become one of the most effective ways for investors to generate stable passive income. Addressing the growing demand for simplicity, security, and profitability, IeByte has officially upgraded its fully automated cloud mining platform, empowering both beginners and experienced investors to earn Bitcoin, Dogecoin, and other mainstream cryptocurrencies without the need for hardware or technical expertise. Why cloud mining in 2025? Traditional crypto mining requires expensive hardware, high electricity costs, and constant maintenance. In 2025, with blockchain networks becoming more competitive, these barriers have grown even higher. Cloud mining solves this by allowing users to lease professional mining power remotely, eliminating the upfront costs and complexity. IeByte stands at the forefront of this transformation, offering investors a transparent and seamless path to daily earnings. IeByte’s upgraded auto-cloud mining platform With its latest upgrade, IeByte introduces: Full Automation: Mining contracts can be activated in just one click, with all processes handled by IeByte’s servers. Enhanced Security: Bank-grade encryption, cold wallets, and real-time monitoring protect every transaction. Scalable Options: From starter packages to high-level investment contracts, investors can choose the plan that matches their goals. Global Reach: Already trusted by users in over 100 countries. Mining contracts for 2025 IeByte offers a wide range of contracts tailored for every investor level. From entry-level plans with daily returns to premium high-yield packages, the platform ensures maximum accessibility. Contract Type Duration Price Daily Reward Total Earnings (Principal + Profit) Starter Contract 1 Day $200 $6 $200 + $6 + $10 bonus Bronze Basic Contract 2 Days $500 $13.5 $500 + $27 Bronze Basic Contract 3 Days $1,200 $36 $1,200 + $108 Silver Advanced Contract 1 Day $5,000 $175 $5,000 + $175 Silver Advanced Contract 2 Days $8,000 $320 $8,000 + $640 Silver…
Paylaş
BitcoinEthereumNews2025/09/17 23:48