Researchers found that multimodal AI models cannot tell time. The more variation there was in the clock face, the more the chatbot being tested was likely to misreadResearchers found that multimodal AI models cannot tell time. The more variation there was in the clock face, the more the chatbot being tested was likely to misread

Before AI Takes Our Jobs, Someone Better Teach It How to Tell Time

Am I the only one who didn’t know that AI cannot figure out time? I mean, every day, we hear all about generative AI “revolutionizing” everything and replacing everyone. Pretty genius little things. So imagine my shock when I learned that multimodal AI models cannot tell time. How did I know, you ask?

To start with, researchers at the University of Edinburgh recently found that multimodal large language models (MLLMs) like ChatGPT-4o, GPT-o1, Gemini-2.0, and Claude 3.5-Sonnet ran into accuracy problems while reading a clock face.

Things got worse when they were tested with clocks designed with Roman numerals, a colored dial, or a decorative hour hand. Some of the clocks also had a hand that tracked seconds in addition to minutes and hours. In the face of those design touches, the AI models reportedly fell into further errors.

This discovery was made during a test of a lineup of top MLLMs today, and to think that Gemini-2.0 performed the “best” with only 22.8% accuracy sounds hilarious. GPT-4.o and GPT-o1’s exact match accuracy stood at 8.6% and 4.84% respectively.

Per the researchers, these models struggled with everything. Which hand is the hour hand? Which direction is it pointing? What angle corresponds to what time? What number is that? According to them, the more variation there was in the clock face, the more the chatbot being tested was likely to misread the clock.

These are literally basic skills for people. Most six or seven-year-olds can already tell time. But for these models, it might as well be the most complicated astrophysics.

After the clock fiasco, the researchers tested the bots on yearly calendars. You know, the ones with all twelve months on one page. GPT-o1 performed the “best” here, reaching 80 percent accuracy. But that still means that one out of every five answers was wrong, including simple questions like “Which day of the week is New Year’s Day? If my child failed to get that right on a quiz, I would honestly be very worried.

I never would have thought that AI models could ever get confused by a common calendar layout. But then, it is not very shocking to find out. It all still boils down to a long-standing gap in AI development. MLLMs only recognize patterns they have already seen, and clocks, calendars, or anything that requires spatial reasoning don’t fit into that.

Humans can look at a warped Dali clock and still figure out roughly what time it is meant to display. But AI models see a slightly thicker hour hand and kind of short-circuit.

Why This Matters

It is easy (almost satisfying) to laugh at ChatGPT, Gemini, and these models for failing a task you learned when you were little. A task you do with so much ease. As someone who has gotten jilted by clients for the free work these things offer, albeit substandard, I admit I do find it really satisfying.

But as much as I want to just laugh it off, there is a more serious angle to this. These same MLLMs are being pushed into autonomous driving perception, medical imaging, robotics, and accessibility tools. They are being used for scheduling and automation as well as real-time decision-making systems.

Now, clock-reading errors are funny. But medical errors? Navigation errors? Even scheduling errors? Not so funny.

If a model cannot reliably read a clock, trusting it blindly in high-stakes environments is too risky a gamble for me. It just shows how far these systems still are from actual, grounded intelligence. And how much human common sense and nuance still matter. I am trying so hard to steer clear of taking this chance to make a human vs. AI case. I sure won’t use it to preach “Why I Hate AI and You Should Too.” But there is a problem that needs to be looked into.

As the study’s lead author, Rohit Saxena, put it, these weaknesses “must be addressed if AI systems are to be successfully integrated into time-sensitive real-world applications.”

Market Opportunity
Sleepless AI Logo
Sleepless AI Price(AI)
$0.03707
$0.03707$0.03707
-3.16%
USD
Sleepless AI (AI) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Visa Expands USDC Stablecoin Settlement For US Banks

Visa Expands USDC Stablecoin Settlement For US Banks

The post Visa Expands USDC Stablecoin Settlement For US Banks appeared on BitcoinEthereumNews.com. Visa Expands USDC Stablecoin Settlement For US Banks
Share
BitcoinEthereumNews2025/12/17 15:23
North America Sees $2.3T in Crypto

North America Sees $2.3T in Crypto

The post North America Sees $2.3T in Crypto appeared on BitcoinEthereumNews.com. Key Notes North America received $2.3 trillion in crypto value between July 2024 and June 2025, representing 26% of global activity. Tokenized U.S. treasuries saw assets under management (AUM) grow from $2 billion to over $7 billion in the last twelve months. U.S.-listed Bitcoin ETFs now account for over $120 billion in AUM, signaling strong institutional demand for the asset. . North America has established itself as a major center for cryptocurrency activity, with significant transaction volumes recorded over the past year. The region’s growth highlights an increasing institutional and retail interest in digital assets, particularly within the United States. According to a new report from blockchain analytics firm Chainalysis published on September 17, North America received $2.3 trillion in cryptocurrency value between July 2024 and June 2025. This volume represents 26% of all global transaction activity during that period. The report suggests this activity was influenced by a more favorable regulatory outlook and institutional trading strategies. A peak in monthly value was recorded in December 2024, when an estimated $244 billion was transferred in a single month. ETFs and Tokenization Drive Adoption The rise of spot Bitcoin BTC $115 760 24h volatility: 0.5% Market cap: $2.30 T Vol. 24h: $43.60 B ETFs has been a significant factor in the market’s expansion. U.S.-listed Bitcoin ETFs now hold over $120 billion in assets under management (AUM), making up a large portion of the roughly $180 billion held globally. The strong demand is reflected in a recent resumption of inflows, although the products are not without their detractors, with author Robert Kiyosaki calling ETFs “for losers.” The market for tokenized real-world assets also saw notable growth. While funds holding tokenized U.S. treasuries expanded their AUM from approximately $2 billion to more than $7 billion, the trend is expanding into other asset classes.…
Share
BitcoinEthereumNews2025/09/18 02:07
Will Ozak AI Outperform DOGE, SHIB, and PEPE in Risk-Adjusted Returns?

Will Ozak AI Outperform DOGE, SHIB, and PEPE in Risk-Adjusted Returns?

The post Will Ozak AI Outperform DOGE, SHIB, and PEPE in Risk-Adjusted Returns? appeared on BitcoinEthereumNews.com. While DOGE, SHIB, and PEPE continue to dominate
Share
BitcoinEthereumNews2025/12/17 15:06