Researchers found that multimodal AI models cannot tell time. The more variation there was in the clock face, the more the chatbot being tested was likely to misreadResearchers found that multimodal AI models cannot tell time. The more variation there was in the clock face, the more the chatbot being tested was likely to misread

Before AI Takes Our Jobs, Someone Better Teach It How to Tell Time

Am I the only one who didn’t know that AI cannot figure out time? I mean, every day, we hear all about generative AI “revolutionizing” everything and replacing everyone. Pretty genius little things. So imagine my shock when I learned that multimodal AI models cannot tell time. How did I know, you ask?

To start with, researchers at the University of Edinburgh recently found that multimodal large language models (MLLMs) like ChatGPT-4o, GPT-o1, Gemini-2.0, and Claude 3.5-Sonnet ran into accuracy problems while reading a clock face.

Things got worse when they were tested with clocks designed with Roman numerals, a colored dial, or a decorative hour hand. Some of the clocks also had a hand that tracked seconds in addition to minutes and hours. In the face of those design touches, the AI models reportedly fell into further errors.

This discovery was made during a test of a lineup of top MLLMs today, and to think that Gemini-2.0 performed the “best” with only 22.8% accuracy sounds hilarious. GPT-4.o and GPT-o1’s exact match accuracy stood at 8.6% and 4.84% respectively.

Per the researchers, these models struggled with everything. Which hand is the hour hand? Which direction is it pointing? What angle corresponds to what time? What number is that? According to them, the more variation there was in the clock face, the more the chatbot being tested was likely to misread the clock.

These are literally basic skills for people. Most six or seven-year-olds can already tell time. But for these models, it might as well be the most complicated astrophysics.

After the clock fiasco, the researchers tested the bots on yearly calendars. You know, the ones with all twelve months on one page. GPT-o1 performed the “best” here, reaching 80 percent accuracy. But that still means that one out of every five answers was wrong, including simple questions like “Which day of the week is New Year’s Day? If my child failed to get that right on a quiz, I would honestly be very worried.

I never would have thought that AI models could ever get confused by a common calendar layout. But then, it is not very shocking to find out. It all still boils down to a long-standing gap in AI development. MLLMs only recognize patterns they have already seen, and clocks, calendars, or anything that requires spatial reasoning don’t fit into that.

Humans can look at a warped Dali clock and still figure out roughly what time it is meant to display. But AI models see a slightly thicker hour hand and kind of short-circuit.

Why This Matters

It is easy (almost satisfying) to laugh at ChatGPT, Gemini, and these models for failing a task you learned when you were little. A task you do with so much ease. As someone who has gotten jilted by clients for the free work these things offer, albeit substandard, I admit I do find it really satisfying.

But as much as I want to just laugh it off, there is a more serious angle to this. These same MLLMs are being pushed into autonomous driving perception, medical imaging, robotics, and accessibility tools. They are being used for scheduling and automation as well as real-time decision-making systems.

Now, clock-reading errors are funny. But medical errors? Navigation errors? Even scheduling errors? Not so funny.

If a model cannot reliably read a clock, trusting it blindly in high-stakes environments is too risky a gamble for me. It just shows how far these systems still are from actual, grounded intelligence. And how much human common sense and nuance still matter. I am trying so hard to steer clear of taking this chance to make a human vs. AI case. I sure won’t use it to preach “Why I Hate AI and You Should Too.” But there is a problem that needs to be looked into.

As the study’s lead author, Rohit Saxena, put it, these weaknesses “must be addressed if AI systems are to be successfully integrated into time-sensitive real-world applications.”

Market Opportunity
Sleepless AI Logo
Sleepless AI Price(AI)
$0.03621
$0.03621$0.03621
-1.52%
USD
Sleepless AI (AI) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Woodway Assurance receives $1 million in funding for data privacy assurance solution EviData

Woodway Assurance receives $1 million in funding for data privacy assurance solution EviData

OTTAWA, ON, Dec. 17, 2025 /PRNewswire/ – New Canadian technology company Woodway Assurance is proud to announce that it has closed an oversubscribed seed funding
Share
AI Journal2025/12/17 23:16
OpenVPP accused of falsely advertising cooperation with the US government; SEC commissioner clarifies no involvement

OpenVPP accused of falsely advertising cooperation with the US government; SEC commissioner clarifies no involvement

PANews reported on September 17th that on-chain sleuth ZachXBT tweeted that OpenVPP ( $OVPP ) announced this week that it was collaborating with the US government to advance energy tokenization. SEC Commissioner Hester Peirce subsequently responded, stating that the company does not collaborate with or endorse any private crypto projects. The OpenVPP team subsequently hid the response. Several crypto influencers have participated in promoting the project, and the accounts involved have been questioned as typical influencer accounts.
Share
PANews2025/09/17 23:58
BlackRock boosts AI and US equity exposure in $185 billion models

BlackRock boosts AI and US equity exposure in $185 billion models

The post BlackRock boosts AI and US equity exposure in $185 billion models appeared on BitcoinEthereumNews.com. BlackRock is steering $185 billion worth of model portfolios deeper into US stocks and artificial intelligence. The decision came this week as the asset manager adjusted its entire model suite, increasing its equity allocation and dumping exposure to international developed markets. The firm now sits 2% overweight on stocks, after money moved between several of its biggest exchange-traded funds. This wasn’t a slow shuffle. Billions flowed across multiple ETFs on Tuesday as BlackRock executed the realignment. The iShares S&P 100 ETF (OEF) alone brought in $3.4 billion, the largest single-day haul in its history. The iShares Core S&P 500 ETF (IVV) collected $2.3 billion, while the iShares US Equity Factor Rotation Active ETF (DYNF) added nearly $2 billion. The rebalancing triggered swift inflows and outflows that realigned investor exposure on the back of performance data and macroeconomic outlooks. BlackRock raises equities on strong US earnings The model updates come as BlackRock backs the rally in American stocks, fueled by strong earnings and optimism around rate cuts. In an investment letter obtained by Bloomberg, the firm said US companies have delivered 11% earnings growth since the third quarter of 2024. Meanwhile, earnings across other developed markets barely touched 2%. That gap helped push the decision to drop international holdings in favor of American ones. Michael Gates, lead portfolio manager for BlackRock’s Target Allocation ETF model portfolio suite, said the US market is the only one showing consistency in sales growth, profit delivery, and revisions in analyst forecasts. “The US equity market continues to stand alone in terms of earnings delivery, sales growth and sustainable trends in analyst estimates and revisions,” Michael wrote. He added that non-US developed markets lagged far behind, especially when it came to sales. This week’s changes reflect that position. The move was made ahead of the Federal…
Share
BitcoinEthereumNews2025/09/18 01:44