I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.

Why Gemini 3.0 is a Great Builder But Still Needs a Human in the Loop

I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.

\ Over the last few weeks, I have been documenting my journey building OpenForge, an AI system capable of translating vague user intent into flight-proven hardware.

\ The goal was to test the reasoning capabilities of Google’s Gemini 3.0. I wanted to answer a specific question: Can an LLM move beyond writing Python scripts and actually engineer physical systems where tolerance, voltage, and compatibility matter?

\ The answer, it turns out, is a complicated "Yes, but…"

\ I am wrapping up this project today. Here is the post-mortem on what worked, what failed, and the critical difference between Generating code and Refactoring systems.

The Win: Drone_4 Works

First, the good news. The drone_4 branch of the repository is a success.

\ If you clone the repo and ask for a "Long Range Cinema Drone," the system works from seed to simulation.

  1. It understands intent: It knows that "Cinema" means smooth flight and "Long Range" means GPS and Crossfire protocols.
  2. It obeys physics: The Compatibility Engine successfully rejects motor/battery combinations that would overheat or explode.
  3. It simulates reality: The USD files generated for NVIDIA Isaac Sim actually fly.

\ I will admit, I had to be pragmatic. In make_fleet.py, I "cheated" a little bit. I relied less on the LLM to dynamically invent the fleet logic and more on hard-coded Python orchestration. I had to remind myself that this was a test of Gemini 3.0’s reasoning, not a contest to see if I could avoid writing a single line of code.

\ As a proof of concept for Neuro-Symbolic AI—where the LLM handles the creative translation, and Python handles the laws of physics—OpenForge is a win.

The Failure: The Quadruped Pivot

The second half of the challenge was to take this working engine and pivot it. I wanted to turn the Drone Designer into a Robot Dog Designer (the Ranch Dog).

\ I fed Gemini 3.0 the entire codebase (88k tokens) and asked it to refactor. It confidently spit out new physics, new sourcing agents, and new kinematics solvers.

\ I am officially shelving the Quadruped branch.

\ It has become obvious that the way I started this pivot led me down a circular drain rabbit hole of troubleshooting. I found myself in a loop where fixing a torque calculation would break the inventory sourcing, and fixing the sourcing would break the simulation.

\ The Quad branch is effectively dead. If I want to build the Ranch Dog, I have to step back and build it from scratch, using the Drone engine merely as a reference model, not a base to overwrite.

The Lesson: The Flattening Effect

Why did the Drone engine succeed while the Quadruped refactor failed?

\ It comes down to a specific behavior I’ve observed in Gemini 3.0 (and other high-context models).

\ When you build from the ground up, you and the AI build the architecture step-by-step. You lay the foundation, then the framing, then the roof.

\ However, when you ask an LLM to pivot an existing application, it does not see the history of the code. It doesn't see the battle scars.

\

  • The original Drone code was broken into distinct, linear steps.
  • There were specific error-handling gates and wait states derived from previous failures.

\ Gemini 3.0, in an attempt to be efficient, flattened the architecture. It lumped distinct logical steps into singular, monolithic processes. On the surface, the code looked cleaner and more Pythonic. But in reality, it had removed the structural load-bearing walls that kept the application stable.

\ It glossed over the nuance. It assumed the code was a style guide, not a structural necessity.

The Paradox of Capability: Gemini 2.5 vs. 3.0

This project highlighted a counterintuitive reality: Gemini 2.5 was safer because the code it confidently spit out was truncated pseudo-code.

\ In previous versions, the outputs were structured to show you how you might go about building. You would then have to build a plan to build the guts inside the program. Sometimes, it could write the entire file. Sometimes, you had to go function by function.

\

  • Gemini 2.5 forced me to be the Architect. I had to go program-by-program, mapping out exactly what I wanted. I had to hold the AI's hand.
  • Gemini 3.0 has the speed and reasoning to do it all at once. It creates a believable illusion of a One-Shot Pivot.

\ Gemini 3.0 creates code that looks workable immediately but is structurally rotten inside. It skips the scaffolding phase.

Final Verdict

If you are looking to build a Generative Manufacturing Engine, or any complex system with LLMs, here are my final takeaways from the OpenForge experiment:

  1. Greenfield is Easy, Brownfield is Hard: LLMs excel at building from scratch. They are terrible at renovating complex, existing architectures without massive human hand-holding.
  2. Don't Refactor with Prompts: If you want to change the purpose of an app, don't ask the AI to rewrite this for X. Instead, map out the logic flow of the old app, and ask the AI to build a new app using that logic map.
  3. Architecture is Still King: You cannot view a codebase as a fluid document that can be morphed by an LLM. You must respect the scaffolding.

\ OpenForge proved that we can bridge the gap between vague user intent and physical engineering. We just can't take the human out of the architecture chair just yet.

\ That said, Gemini 3.0 is a massive leap from 2.5. Part of what I am exploring here is how to get the best out of a brand-new tool.

\

Market Opportunity
WHY Logo
WHY Price(WHY)
$0.00000001515
$0.00000001515$0.00000001515
0.00%
USD
WHY (WHY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Why It Could Outperform Pepe Coin And Tron With Over $7m Already Raised

Why It Could Outperform Pepe Coin And Tron With Over $7m Already Raised

The post Why It Could Outperform Pepe Coin And Tron With Over $7m Already Raised appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 20:26 While meme tokens like Pepe Coin and established networks such as Tron attract headlines, many investors are now searching for projects that combine innovation, revenue-sharing and real-world utility. BlockchainFX ($BFX), currently in presale at $0.024 ahead of an expected $0.05 launch, is quickly becoming one of the best cryptos to buy today. With $7m already secured and a unique model spanning multiple asset classes, it is positioning itself as a decentralised super app and a contender to surpass older altcoins. Early Presale Pricing Creates A Rare Entry Point BlockchainFX’s presale pricing structure has been designed to reward early participants. At $0.024, buyers secure a lower entry price than later rounds, locking in a cost basis more than 50% below the projected $0.05 launch price. As sales continue to climb beyond $7m, each new stage automatically increases the token price. This built-in mechanism creates a clear advantage for early investors and explains why the project is increasingly cited in “best presales to buy now” discussions across the crypto space. High-Yield Staking Model Shares Platform Revenue Beyond its presale appeal, BlockchainFX is creating a high-yield staking model that gives holders a direct share of platform revenue. Every time a trade occurs on its platform, 70% of trading fees flow back into the $BFX ecosystem: 50% of collected fees are automatically distributed to stakers in both BFX and USDT. 20% is allocated to daily buybacks of $BFX, adding demand and price support. Half of the bought-back tokens are permanently burned, steadily reducing supply. Rewards are based on the size of each member’s BFX holdings and capped at $25,000 USDT per day to ensure sustainability. This structure transforms token ownership from a speculative bet into an income-generating position, a rare feature among today’s altcoins. A Multi-Asset Platform…
Share
BitcoinEthereumNews2025/09/18 03:35
The Contrarian Truth: Why Bitcoin and Ethereum Prices Defy Social Media Sentiment

The Contrarian Truth: Why Bitcoin and Ethereum Prices Defy Social Media Sentiment

BitcoinWorld The Contrarian Truth: Why Bitcoin and Ethereum Prices Defy Social Media Sentiment Have you ever noticed that when everyone on social media is screaming
Share
bitcoinworld2025/12/20 07:45
Record instroom Bitcoin-ETF’s – richting $120.000?

Record instroom Bitcoin-ETF’s – richting $120.000?

Connect met Like-minded Crypto Enthusiasts! Connect op Discord! Check onze Discord   De markt voor Bitcoin ETF’s laat wederom een opvallende trend zien. De afgelopen week werd de grootste instroom sinds juli geregistreerd, een ontwikkeling die de aandacht van zowel institutionele als particuliere beleggers trekt. Deze instroom zorgt voor nieuwe speculatie over de vraag of Bitcoin binnenkort de grens van 120.000 dollar kan doorbreken. Laten we dit hieronder nader bekijken. Grootste instroom sinds juli Volgens recente marktgegevens wist de Amerikaanse spot Bitcoin ETF’s een instroom te krijgen ver boven de gemiddelde niveaus van de afgelopen weken. Alleen al op 16 september werd meer dan 290 miljoen dollar netto in deze fondsen gestort. Daarmee markeert dit de zevende opeenvolgende dag met positieve instroom, een duidelijk teken dat institutionele belangstelling opnieuw toeneemt. De grootste bijdrage kwam van BlackRock’s iShares Bitcoin Trust, dat meer dan 200 miljoen dollar stortte. Ook de ETF’s van Fidelity en Ark lieten grote instroom zien. Kortom, de instroom blijft positief. U.S. spot Bitcoin ETFs Ignite with a $553M daily inflow, pushing a four-day streak to $1.7B. Ether ETFs also saw a resurgence with $113M in new funds. #Bitcoin #ETF #ETHhttps://t.co/zZiNqtKSEm — Cryptonews.com (@cryptonews) September 12, 2025 Hoe instroom prijsondersteuning biedt De sterke instroom in Bitcoin ETF’s is meer dan een mijlpaal. Het laat zien hoe de vraag naar Bitcoin groeit vanuit institutionele hoek en dat deze vraag niet voor een keer is, maar structureel is. Omdat de instroom de hoeveelheid nieuw geminde Bitcoin overtreft, ontstaat er een overschot qua vraag dat de prijs positief kan beïnvloeden. Dit verschil tussen aanbod en vraag zorgt ervoor dat het dalende risico wordt beperkt. Wanneer institutionele beleggers via ETF’s posities opbouwen, gebeurt dit bovendien vaak met een langere beleggingshorizon. Dat geeft de markt extra stabiliteit, zeker in een periode waarin onzekerheden rondom rente en macro-economie nog altijd spelen. Signaalfunctie voor beleggers Voor beleggers in de crypto markt hebben deze cijfers een signaalfunctie. Het vertrouwen dat grote institutionele spelers door miljarden te alloceren in gereguleerde beleggingsproducten bevestigt dat Bitcoin steeds meer gekocht wordt in de traditionele financiële wereld. Dit momentum werkt vaak door naar de bredere markt, omdat particuliere beleggers dit zien als bevestiging dat de trend omhoog sterker wordt. Ook technische analyse wijst op een belangrijke fase. De koers van Bitcoin beweegt rond de 118.000 dollar, een weerstandsniveau dat al meerdere keren is getest. Het momentum dat voortkomt uit de ETF instroom kan de kracht geven om dit niveau te doorbreken en een nieuwe fase van prijsstijging richting 120.000 dollar in te luiden. Op korte termijn richting de $120.000? Hoewel niemand met zekerheid kan voorspellen of Bitcoin dit niveau direct zal bereiken, biedt de huidige context sterke aanwijzingen dat de kans aanwezig is. De combinatie van record instroom, institutioneel vertrouwen en een gunstig technisch analyse vormt een krachtige mix. Beleggers doen er goed aan om rekening te houden met de invloed van externe factoren zoals beleidsbesluiten van de Federal Reserve. Best wallet - betrouwbare en anonieme wallet Best wallet - betrouwbare en anonieme wallet Meer dan 60 chains beschikbaar voor alle crypto Vroege toegang tot nieuwe projecten Hoge staking belongingen Lage transactiekosten Best wallet review Koop nu via Best Wallet Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek.   Het bericht Record instroom Bitcoin-ETF’s – richting $120.000? is geschreven door Timo Bruinsel en verscheen als eerst op Bitcoinmagazine.nl.
Share
Coinstats2025/09/18 01:31