Geruchten over een mogelijke verkoop van CoinGecko zorgen voor onrust in de cryptosector. De marktdata-provider zou volgens bronnen een verkoop onderzoeken tegenGeruchten over een mogelijke verkoop van CoinGecko zorgen voor onrust in de cryptosector. De marktdata-provider zou volgens bronnen een verkoop onderzoeken tegen

CoinGecko mogelijk te koop: wat betekent dit voor onafhankelijke cryptodata

Geruchten over een mogelijke verkoop van CoinGecko zorgen voor onrust in de cryptosector. De marktdata-provider zou volgens bronnen een verkoop onderzoeken tegen een waardering van circa 500 miljoen dollar. Medeoprichter Bobby Ong reageerde inmiddels publiekelijk en benadrukt dat CoinGecko onafhankelijk blijft opereren, terwijl de bredere markt zich afvraagt wat een deal zou betekenen voor betrouwbare cryptodata. Check onze Discord Connect met "like-minded" crypto enthousiastelingen Leer gratis de basis van Bitcoin & trading - stap voor stap, zonder voorkennis. Krijg duidelijke uitleg & charts van ervaren analisten. Sluit je aan bij een community die samen groeit. Nu naar Discord CoinGecko onderzoekt strategische opties Volgens meerdere bronnen die spraken met CoinDesk heeft CoinGecko investeringsbank Moelis ingeschakeld om strategische opties te verkennen, waaronder een mogelijke verkoop. Twee ingewijden spreken over een richtwaardering van ongeveer 500 miljoen dollar, al zou het proces zich nog in een vroeg stadium bevinden. CoinGecko zelf heeft geen details bevestigd over gesprekken of een concreet verkooptraject. Wel past het nieuws in een bredere golf van consolidatie binnen de cryptosector. In 2025 werd voor 8,6 miljard dollar aan crypto-overnames aangekondigd, verdeeld over een recordaantal van 133 deals. CoinGecko is exploring a potential sale and has hired Moelis to advise on the process. The firm is reportedly targeting a valuation of around $500M, although one source said it may be too early for a final valuation to be set. > The move comes amid a sharp rise in crypto sector… pic.twitter.com/WGhRoAPUq2 — Marco Manoppo (@ManoppoMarco) January 15, 2026 Reactie van medeoprichter Bobby Ong Medeoprichter Bobby Ong reageerde woensdag op de berichtgeving. In een bericht op X stelt hij dat CoinGecko al bijna twaalf jaar wordt geleid door hem en medeoprichter TM Lee, en dat het bedrijf winstgevend is en groei laat zien. Volgens Ong evalueert CoinGecko, zoals elk volwassen bedrijf, regelmatig strategische kansen. Hij benadrukt dat CoinGecko opereert vanuit een sterke positie en dat de dienstverlening onveranderd doorgaat. Gebruikers kunnen blijven rekenen op dezelfde datasets, methodologie en operationele onafhankelijkheid. We’ve had a lot of questions following recent media reports, and we’re honored by the interest.@tmlee and I have been running CoinGecko for nearly 12 years, and like any growing and profitable company, we regularly evaluate strategic opportunities to strengthen our business and… — Bobby Ong (@bobbyong) January 15, 2026 Waarom onafhankelijkheid van marktdata telt De discussie raakt een gevoelig punt binnen crypto. Marktdata vormen de ruggengraat van handelsbeslissingen, research en risicobeheer. Zodra eigendom en commerciële belangen te dicht op handelsplatforms komen te liggen, ontstaat spanning rond neutraliteit en vertrouwen. Dat debat speelt al sinds CoinMarketCap in 2020 werd overgenomen door Binance. Hoewel CoinMarketCap formeel los opereert, wijzen critici sindsdien op mogelijke belangenverstrengeling tussen data, rankings en handelsvolumes. CoinGecko positioneerde zich de afgelopen jaren juist expliciet als alternatief met focus op transparante methodologie, bredere data-dekking en minder commerciële prikkels vanuit exchanges. Hoe Bitcoin kopen?Bitcoin kopen? Wij leggen je uit hoe en waar je dat het beste kan doen! Waar Bitcoin kopen in 2026? In het nieuwe jaar is er het nodige veranderd wat betreft crypto regulatie, en dus is het belangrijker dan ooit om je Bitcoin op een goede plek te kopen. BTC kopen kan in Nederland op meerdere manieren: via een crypto exchange, via een broker of via peer-to-peer. In deze gids leggen… Continue reading CoinGecko mogelijk te koop: wat betekent dit voor onafhankelijke cryptodata document.addEventListener('DOMContentLoaded', function() { var screenWidth = window.innerWidth; var excerpts = document.querySelectorAll('.lees-ook-description'); excerpts.forEach(function(description) { var excerpt = description.getAttribute('data-description'); var wordLimit = screenWidth wordLimit) { var trimmedDescription = excerpt.split(' ').slice(0, wordLimit).join(' ') + '...'; description.textContent = trimmedDescription; } }); }); Veranderend speelveld voor dataplatforms Naast consolidatie speelt nog een andere factor mee. Het gebruik van AI-tools en chatbots drukt het verkeer naar traditionele datasites. Volgens Similarweb daalde het maandelijkse verkeer van CoinGecko in 2025 fors ten opzichte van een jaar eerder. Die trend zet druk op advertentie-inkomsten en dwingt dataplatforms na te denken over schaal, partnerships en nieuwe verdienmodellen. Dat verklaart mede waarom strategische opties nu worden verkend, zonder dat dit automatisch betekent dat een verkoop onafwendbaar is. Wat dit betekent voor gebruikers Voorlopig verandert er niets. CoinGecko blijft operationeel zoals voorheen, en er is geen aangekondigde deal. Toch laat het dossier zien hoe schaars echt onafhankelijke marktdata in crypto zijn geworden. Met CoinMarketCap al jaren in handen van een grote exchange, zou een verkoop van CoinGecko opnieuw vragen oproepen over transparantie, governance en vertrouwen in marktinformatie. Of CoinGecko uiteindelijk zelfstandig blijft of onderdeel wordt van een grotere groep, zal bepalen hoe de sector in de toekomst toegang krijgt tot neutrale data. Best wallet - betrouwbare en anonieme wallet Best wallet - betrouwbare en anonieme wallet Meer dan 60 chains beschikbaar voor alle crypto Vroege toegang tot nieuwe projecten Hoge staking belongingen Lage transactiekosten Best wallet review Koop nu via Best Wallet Let op: cryptocurrency is een zeer volatiele en ongereguleerde investering. Doe je eigen onderzoek.

Het bericht CoinGecko mogelijk te koop: wat betekent dit voor onafhankelijke cryptodata is geschreven door Raul Gavira en verscheen als eerst op Bitcoinmagazine.nl.

Market Opportunity
OP Logo
OP Price(OP)
$0.2594
$0.2594$0.2594
-3.24%
USD
OP (OP) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40